قالب وردپرس درنا توس
Home https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ Health https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ Exceptional sequencing of Finnish isolates enhances the power of association in rare variants

Exceptional sequencing of Finnish isolates enhances the power of association in rare variants



  • 1.

    Samocha, K. E. et al. The regional margin of error improves the prediction of a variant of harm. Preprinted at https://www.bioRxiv.org/content/10.1101/148353v1 (2017).

  • 2.

    Marouli, E. et al. Rare and low-frequency coding variants alter human growth. Nature 542 1

    86–190 (2017).

  • 3.

    Flannick, J. et al. Exemplary sequencing of 20 791 cases of type 2 diabetes and 24 440 controls. Nature 570 71–76 (2019).

  • 4.

    Timpson, NJ, Greenwood, CMT, Soranzo, N., Lawson, DJ & Richards, JB Genetic architecture: the form of genetic contribution to human traits and diseases. Nat. Genes Revenues . 19 110–124 (2018).

  • 5.

    Zuk, O. et al. Finding Missing Heredity: Designing Rare Options for Associations. Proc. Natl Acad. Sci. USA 111 E455 – E464 (2014).

  • 6.

    Xue, Y. et al. Enrichment of low-frequency functional variants revealed by whole genome sequencing of multiple isolated European populations. Nat. Commun . 8 15927 (2017).

  • 7.

    Southam, L. et al. Whole genome sequencing and imputation in isolated populations identify genetic associations with medically relevant complex traits. Nat. Commun . 8 15606 (2017).

  • 8.

    Manolio, T. A. et al. Finding the missing heredity of complex diseases. Nature 461 747–753 (2009).

  • 9.

    Jakkula, E. et al. Genome-wide variation patterns reveal a significant substructure in the founding population. Am. J. Hum. Genet . 83 787–794 (2008).

  • 10.

    Polvi, A. et al. Updated Finnish Inheritance Disease Database (FinDis) – a database of genes mutated in Finnish inheritance from diseases brought to the next generation of sequences Hum. Mutat . 34 1458–1466 (2013).

  • 11.

    Manning, A. et al. The low-frequency inactivation variant AKT2 enriched in the Finnish population is associated with fasting insulin levels and the risk of type 2 diabetes. Diabetes 66 2019-2032 (2017).

  • 12.

    Lim, E. T. et al. Distribution and medical impact of options for loss of function in the Finnish population. PLoS Genet . 10 e1004494 (2014).

  • 13.

    Service, S. K. et al. Re-sequencing broadens our understanding of the phenotypic impact of variants of GWAS loci. PLoS Genet . 10 e1004147 (2014).

  • 14.

    Würtz, P. et al. Quantitative serum magnetic resonance imaging in large-scale epidemiology: a primer on more -omic technologies. Am. J. Epidemiol . 186 1084-1096 (2017).

  • 15.

    Laakso, M. et al. The metabolic syndrome in men is exploring: a resource for research into metabolic and cardiovascular diseases. J. Lipid Res . 58 481–493 (2017).

  • 16.

    Borodulin, K. et al. Forty-year trends in cardiovascular risk factors in Finland. Eur. J. Public Health 25 539-546 (2015).

  • 17.

    Abraham, G. et al. Genomic prediction of coronary heart disease. Eur. Heart J . 37 3267–3278 (2016).

  • 18.

    Sabatti, C. et al. Genomic association analysis of metabolic traits in the birth cohort of the founder population. Nat. Genet . 41 35–46 (2009).

  • 19.

    Pulizzi, N. et al. Interaction between prenatal growth and high-risk genotypes in the development of type 2 diabetes. Diabetologia 52 825–829 (2009).

  • 20.

    Fagerberg, L. et al. Analysis of specific expression of human tissue by integration into the genome of transcriptomics and antibodies based on antibodies. Mol. Cell. Proteomics 13 397–406 (2014).

  • 21.

    Corsetti, J. P. et al. Thrombospondin-4 polymorphism (A387P) predicts cardiovascular risk in patients with high HDL cholesterol and C-reactive protein infarction. Thromb. Haemost . 106 1170–1178 (2011).

  • 22.

    Zhang, X. J. et al. Association between single nucleotide polymorphisms in thrombospondin genes and coronary artery disease: a meta-analysis. Thromb. Really . 136 45–51 (2015).

  • 23.

    Beygo, J. et al. New knowledge of MEG8-DMR imprinted in 14q32 and clinical and molecular description of new patients with Temple syndrome. Eur. J. Hum. Genet . 25 935-945 (2017).

  • 24.

    Wallace, C. et al. The imprinted DLK1-MEG3 gene region of chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat. Genet . 42 68–71 (2010).

  • 25.

    Day, F. R. et al. Genomic analyzes identify hundreds of age-related options for menarche and support a role for puberty at cancer risk. Nat. Genet . 49 834–841 (2017).

  • 26.

    Perry, J. R. et al. Parent-specific allele associations among 106 genomic loci for menarche age. Nature 514 92–97 (2014).

  • 27.

    Cleaton, M. A. et al. Fetal-derived DLK1 is required for maternal metabolic adaptation to pregnancy and is associated with restriction of fetal growth. Nat. Genet . 48 1473–1480 (2016).

  • 28.

    Chaves, J. A. et al. Genomic variation of the tips of Darwin's adaptive radiating fins. Mol. Ecol . 25 5282–5295 (2016).

  • 29.

    Surakka, I. et al. The effect of low frequency and rare variants on lipid levels. Nat. Genet . 47 589–597 (2015).

  • 30.

    Ding, Y. et al. Plasma glycine and the risk of acute myocardial infarction in patients with suspected stable angina. J. Am. Heart Assoc. . 5 e002621 (2015).

  • 31.

    Wittemans, L. B. L. et al. Assessment of causation of glycine with risk of cardio-metabolic diseases. Nat. Commun . 10 1060 (2019).

  • 32.

    Perry, R. J. et al. Acetate mediates the microbiome-brain-β-cell to promote metabolic syndrome. Nature 534 213–217 (2016).

  • 33.

    Tabbassum, R. et al. Genetics of Human Plasma Lipid: Understanding Lipid Metabolism and Its Relation to Diseases Beyond Traditional Lipids. Preprinted at https://www.biorxiv.org/content/10.1101/457960v1 (2018).

  • 34.

    Casanova, M. L. et al. Exocrine pancreatic disorders in transgenic mice expressing human keratin 8. J. Clin. Invest . 103 1587–1595 (1999).

  • 35.

    Surendran, P. et al. Transgender meta-analyzes identify rare and common variants related to blood pressure and hypertension. Nat. Genet . 48 1151–1161 (2016).

  • 36.

    Liu, C. et al. A meta-analysis identifies common and rare variants that affect blood pressure and overlap with loci of metabolic traits. Nat. Genet . 48 1162–1170 (2016).

  • 37.

    Palmer, C. & Pe & er, I. Statistical correction of the winner's curse explains the variability of replication in the quantitative association in the genome. studies. PLoS Genet . 13 e1006916 (2017).

  • 38.

    Norio, R. Finnish Inheritance of Disease I: characteristics, causes, background. Hum. Genet . 112 441–456 (2003).

  • 39.

    Service, S. et al. Size and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat. Genet . 38 556-560 (2006).

  • 40.

    Chiang, C. W. K. et al. Genomic history of the population of Sardinia. Nat. Genet . 50 1426-1434 (2018).

  • 41.

    Rivas, M. A. et al. A look at the genetic epidemiology of Crohn's disease and rare diseases in Ashkenazi's Jewish population. PLoS Genet . 14 e1007329 (2018).

  • 42.

    Bastarache, L. et al. Phenotype risk outcomes identify patients with unrecognized Mendelia models. Science 359 1233–1239 (2018).

  • 43.

    Niemi, M. E. K. et al. Common genetic variants contribute to the risk of rare severe neurodevelopmental disorders. Nature 562 268–271 (2018).

  • 44.

    Surakka, I. The rate of false polymorphisms introduced when entering genotypes from global imputation panels. Preprinted at https://www.biorxiv.org/content/10.1101/080770v1 (2016).

  • 45.

    Collins, F. S. & Varmus, H. A new initiative in precision medicine. N. Engl. J. Med . 372 793–795 (2015).

  • 46.

    Stancáková, A. et al. Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes 58 1212–1221 (2009).

  • 47.

    Borodulin, K. et al. Cohort Profile: FINRISK National Survey. Int. J. Epidemiol . 47 696–696i (2017).

  • 48.

    Wu, J. et al. Summary of the effects of antihypertensive drugs on measured blood pressure. Am. J. Hypertens . 18 935–942 (2005).

  • 49.

    Tobin, MD, Sheehan, NA, Scurrah, KJ & Burton, PR Adjusting therapeutic effects in quantitative characterization studies: antihypertensive therapy and systolic blood pressure. Stat. Med . 24 2911–2935 (2005).

  • 50.

    Liu, D. J. et al. Extensive study of plasma lipid association in> 300,000 individuals. Nat. Genet . 49 1758–1766 (2017).

  • 51.

    Friedewald, WT, Levy, RI & Fredrickson, DS Evaluation of low-density lipoprotein cholesterol concentration in plasma without the use of a preparative ultracentrifuge. Clin. Chem . 18 499–502 (1972).

  • 52.

    DePristo, M. A. et al. A framework for detecting variations and genotyping using next-generation DNA sequence data. Nat. Genet . 43 491–498 (2011).

  • 53.

    Jun, G. et al. Detection and evaluation of contamination of human DNA samples in sequential and massively based genotype data. Am. J. Hum. Genet . 91 839–848 (2012).

  • 54.

    Tan, A., Abecasis, G. R. & Kang, H. M. A single representation of genetic variants. Bioinformatics 31 2202-2204 (2015).

  • 55.

    Davis, J. P. et al. Common, low frequency and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in men from Finland from the METSIM study. PLoS Genet . 13 e1007079 (2017).

  • 56.

    Das, S. et al. Next Generation Genotype Impression Services and Methods. Nat. Genet . 48 1284–1287 (2016).

  • 57.

    The Haplotype Reference Consortium. Reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet . 48 1279–1283 (2016).

  • 58.

    McLaren, W. et al. Ensembl variant effect forecast. The Genome of Biol . 17 122 (2016).

  • 59.

    Adzhubei, I. A. et al. Method and server for predicting deleterious mutation mutations. Nat. Methods 7 248–249 (2010).

  • 60.

    Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome Res . 19 1553–1561 (2009).

  • 61.

    Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. MutationTaster2: predicting a mutation for the deep-successive era, Nat. Methods 11 361–362 (2014).

  • 62.

    Kumar, P., Henikoff, S. & Ng, PC Predicting the effects of encoding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc . 4 1073–1081 (2009).

  • 63.

    Kang, H. M. et al. The variant component model for accounting for sample structure in genome-wide association studies. Nat. Genet . 42 348–354 (2010).

  • 64.

    Buniello, A. et al. NHGRI-EBI GWAS Catalog of Published Genome-wide Association Studies, Targeted Arrays and Summary Statistics 2019. Nucleic Acids Res . 47 D1005 – D1012 (2019).

  • 65.

    Kettunen, J. et al. A genomic study of circulating metabolites identified 62 loci and revealed new systemic effects of LPA. Nat. Commun . 7 11122 (2016).

  • 66.

    Kettunen, J. et al. The genome-wide association study identified multiple loci affecting human serum metabolite levels. Nat. Genet . 44 269–276 (2012).

  • 67.

    Teslovich, T. M. et al. Identification of seven new loci related to amino acid levels using single-variant and gene-based assays in 8545 Finnish men from the METSIM study. Hum. Mol. Genet . 27 1664–1674 (2018).

  • 68.

    Inouye, M. et al. New loci for metabolic networks and multifaceted expression studies reveal atherosclerosis genes. PLoS Genet . 8 e1002907 (2012).

  • 69.

    Lee, S. et al. Optimal unified approach for testing rare-association associations using small case samples, controlled trials for whole exome sequencing. Am. J. Hum. Genet . 91 224–237 (2012).

  • 70.

    Peterson, C. B., Bogomolov, M., Benjamini, Y. & Sabatti, C. Many phenotypes without many false discoveries: error control strategies for multilateral association studies. Genet. Epidemiol . 40 45–56 (2016).

  • 71.

    Loh, P. R. et al. Reference Based Phasing Using the Haplotype Reference Consortium Panel. Nat. Genet . 48 1443–1448 (2016).

  • 72.

    Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate method of genotype imputation for the next genome – wide association studies PLoS Genet . 5 e1000529 (2009).

  • 73.

    Manichaikul, A. et al. A solid conclusion about relationships in genome-wide association studies. Bioinformatics 26 2867–2873 (2010).

  • 74.

    Lawson, DJ, Hellenthal, G., Myers, S. & Falush, D. Determining population structure using dense haplotype data. PLoS Genet . 8 e1002453 (2012).

  • 75.

    Chang, C. C. et al. Second Generation PLINK: Facing the Challenge of Larger and Richer Datasets. Gigascience 4 7 (2015).

  • 76.

    Pirinen, M. et al. biMM: effective estimation of genetic dispersions and covariates for cohorts with high-dimensional phenotype measurements. Bioinformatics 33 2405-2407 (2017).


  • Source link