Home https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ Science https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ Experimental deterministic correction of qubit loss

Experimental deterministic correction of qubit loss



  • 1.

    Gottesman, D. Theory of fault-tolerant quantum computation. Phys. Venerable A 57, 127–137 (1998).

    ADS CAS Google Scholar article

  • 2.

    Chiaverini, J. et al. Implementation of quantum error correction. Nature 432, 602–605 (2004).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 3.

    Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 4.

    Nigg, D. et al. Quantum calculations on a topologically coded qubit. Science 345, 302–305 (2014).

    ADS MathSciNet CAS PubMed PubMed Central MATH Article Google Scholar

  • 5.

    Takita, M., Cross, AW, Córcoles, AD, Chow, JM & Gambetta, JM Experimental demonstration of fault-tolerant state training with superconducting qubits. Phys. Reverend Lett. 119, 180501 (2017).

    ADS PubMed PubMed Central Google Scholar article

  • 6.

    Linke, NM et al. Tolerant to damage such as error detection. Sci. Adv. 3., e1701074 (2017).

    ADS PubMed PubMed Central Google Scholar article

  • 7.

    Córcoles, AD et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Common. 6, 6979 (2015).

    ADS PubMed PubMed Central Google Scholar article

  • 8.

    Knill, E., Laflamme, R., Martinez, R. & Negrevergne, C. Quantum computer benchmarking: a five-qubit error correction code. Phys. Reverend Lett. 865811 (2001).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 9.

    Yao, X.-C. and others. Experimental demonstration of topological error correction. Nature 482, 489 (2012).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 10.

    Grassl, M., Beth, T. & Pellizzari, T. Codes for the quantum erasure channel. Phys. Venerable A 56, 33–38 (1997).

    ADS MathSciNet CAS article Google Scholar

  • 11.

    Brown, NC & Brown, KR Comparison of Zebitan qubits with hyperfine qubits in the context of the surface code: 174Yb+ and 171Yb+. Phys. Venerable A 97, 052301 (2018).

    ADS CAS Google Scholar article

  • 12.

    Lu, C.-Y. and others. Experimental quantum coding against qubit loss error. Proc. Natl Acad. Sci. USA 105, 11050–11054 (2008).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 13.

    Bell, BA et al. Experimental demonstration of quantum code for error correction in graph state. Nat. Common. 5, 3658 (2014).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 14.

    Morley-Short, S. et al. Architectural requirements for physical depth for generating universal states of a photon cluster. Quantity. Sci. Tech. 3., 015005 (2018).

    Google Scholar article

  • 15.

    Kitaev, A. Quantum calculation, resistant to damage by any ions. An. Phys. 303, 2–30 (2003).

    ADS MathSciNet CAS MATH Article Google Scholar

  • 16.

    Denis, E., Kitaev, A., Landal, A. and Preskill J. Topological quantum memory. J. Math. Phys. 43, 4452 (2002).

    ADS MathSciNet MATH Article Google Scholar

  • 17.

    Schindler, P. et al. Quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013).

    ADS Article Google Science

  • 18.

    Fowler, AG Dealing with qubit leakage in topological codes. Phys. Venerable A 88, 042308 (2013).

    ADS Article Google Science

  • 19.

    Epstein, JM, Cross, AW, Magesan, E. & Gambetta, JM Boundary study of randomized protocols for comparative analysis. Phys. Venerable A 89, 062321 (2014).

    ADS Article Google Science

  • 20.

    Xia, T. et al. Randomized benchmarking of single qubit gates in a 2D array of neutral atomic qubits. Phys. Reverend Lett. 114, 100503 (2015).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 21.

    Kwon, M., Ebert, MF, Walker, TG & Saffman, M. Parallel low-loss measurement of multiple atomic qubits. Phys. Reverend Lett. 119, 180504 (2017).

    ADS PubMed PubMed Central Google Scholar article

  • 22.

    Brown, NC & Brown, KR Leak reduction for quantum error correction using a mixed qubit scheme Phys. Venerable A 100, 032325 (2019).

    ADS CAS Google Scholar article

  • 23.

    Hayes, D. et al. Elimination of errors in the leakage of ultrafine qubits. Phys. Reverend Lett. 124, 170501 (2020).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 24.

    Ghosh, J., Fowler, AG, Martinis, JM & Geller, MR Understanding the effects of leakage in superconducting circuits for detecting quantum errors. Phys. Venerable A 88, 062329 (2013).

    ADS Article Google Science

  • 25.

    Stace, TM, Barrett, SD & Doherty, AC Thresholds for loss topological codes. Phys. Reverend Lett. 102, 200501 (2009).

    ADS PubMed PubMed Central Google Scholar article

  • 26.

    Varbanov, BM et al. Detection of surface code based on transon. Preprint at https://arxiv.org/abs/2002.07119 (2020).

  • 27.

    Bombin, H. & Martin-Delgado, MA Topological quantum distillation. Phys. Reverend Lett. 97, 180501 (2006).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • 28.

    Vodola, D., Amaro, D., Martin-Delgado, MA & Müller, M. Permeation of twins for qubit losses in topological color codes. Phys. Reverend Lett. 121, 060501 (2018).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 29.

    Calderbank, AR & Shor, PW There are good quantum codes for error correction. Phys. Venerable A 54, 1098–1105 (1996).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 30.

    Steane, AM Error correcting codes in quantum theory. Phys. Reverend Lett. 77, 793–797 (1996).

    ADS MathSciNet CAS PubMed PubMed Central MATH Article Google Scholar

  • 31.

    Mølmer, K. & Sørensen, A. Entanglement of many particles of hot-trapped ions. Phys. Reverend Lett. 82, 1835–1838 (1999).

    ADS Article Google Science

  • 32.

    Choi, M.-D. Completely positive line maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975).

    MathSciNet MATH Article Google Scholar

  • 33.

    Knill, E. Quantum calculations with real noisy devices. Nature 434, 39–44 (2005).

    ADS CAS PubMed PubMed Central Google Scholar article

  • 34.

    Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for concatenated distance codes-3. As inf. computer. 6, 97–165 (2006).

    MathSciNet MATH Google Scholar


  • Source link