قالب وردپرس درنا توس
Home https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ Science https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ Hubble shows the atmosphere of Uranus and Neptune

Hubble shows the atmosphere of Uranus and Neptune



Like the Earth, Uranus and Neptune have a season and are trying to change the weather patterns. But unlike Earth, the seasons of these planets continue for years, not months, and meteorological patterns occur on a scale unimaginable to Earth standards. A good example is the storms observed in the atmosphere of Neptune and Uranus, which include the famous Great Dark Spot of Neptune.

During its annual Uranus and Neptune observation, the Hubble Space Telescope (HST) recently provided topical observations of the climate patterns of the two planets. Besides seeing a new and mysterious storm of Neptune, Hubble gives a new look to a long-lived storm around Uranus' North Pole. These observations are part of Hubble's long-term mission to improve our understanding of the outer planets.

The new images are made as part of the OPAL program. The Hubble Project led by Amy Simon of the NASA Space Flight Center. Every year, this program captures global maps of the outer planets of the Solar System when they are closest to Earth. One of OPAL's main goals is to study long-term seasonal changes and comparatively transient events, such as the appearance of dark spots. ) away from the planet. The big dark spot in the middle of the image was the first storm she had ever seen on Neptune. Their discovery is not an easy task, as these dark spots appear fast and are relatively short-lived, to the point where some may have appeared and disappeared during the many years of Hubble's observations of Neptune. This is another goal of the OPAL program, which must ensure that astronomers do not miss another.

This latest dark spot, measuring approximately 11,000 kilometers in diameter, appears in the upper center of the planet. The Hubble first noticed it in September 2018, when Neptune's southern hemisphere experienced summer. This is in line with the seasonal change of the planet, where warming in the southern hemisphere causes more dramatic weather patterns to the north.

Although it is unclear how these storms are formed, new research by Simon and the OPAL team show that they are rapidly forming, lasting four to six years, and then disappearing for two years. Like the Red Spot of Jupiter, the dark whirlwinds revolve in an anticyclonic direction and look to scrape material from deeper levels into the atmosphere of the ice giant. In fact, Hubble's observations from 2016 show that the whirlwinds are likely to deeper into the atmosphere of Neptune and only become visible when the storm's peak reaches higher heights. At the same time, they are accompanied by "cloud satellites" seen in Hubble's images as bright white spots on the right of the dark function. November 2018 shows a new dark storm (in the center). Regards: NASA, NASA Goddard Space Flight Center and M. Wong and A. Hsu (University of California, Berkeley)

These clouds consist of methane ice creams that freeze when vortices cause deviation of the flow of ambient air up the storm. The long, thin cloud to the left of the dark spot is a transient characteristic that is not part of the storm. The same is true of Uranus, which shows a huge bright cloud cover on the North Pole.

In the case of Uranus, scientists believe that this is the result of Uranus' unique orientation, where its axis is tilted over 90 ° to the solar equator. Since Uranus is traveling almost on its own side, the Sun shines almost directly at the North Pole in summer in the northern hemisphere. Uranus is now approaching the middle of its summer season, making the polar hats region more visible. This polar hat may be the result of seasonal changes in the atmospheric flow and is accompanied by a large, compact cloud of methane-ice near its edge in the image. There is also a narrow cloud strip that surrounds the planet north of the equator. This is another mystery about Uranus and Neptune, what such bands are limited to such narrow latitudes as the planet has such wide winds in the west.

This is the fourth mysterious vortex depicted by Hubble in 1993 and the sixth. as astronomers first realize these phenomena. The first two dark spots were discovered by the spacecraft Voyager 2 because it made its historic overflight in 1989. Since then, only the Hubble Space Telescope has been able to trace these features. due to its sensitivity to the blue light

This image of Uranus from the Hubble Space Telescope, made in November 2018, reveals a huge bright turbulent cloud on the North Pole. Credit: NASA Goddard Space Flight Center and M. Wong and A. Hsu (University of California, Berkeley)

These images are part of the growing database of Hubble's pictures of Neptune and Uranus who follow the time patterns of the planet over time. Similarly, how meteorologists predict Earth time based on long-term trends, astronomers hope that long-term monitoring of the outer planets will help Hubble to uncover the lasting mysteries of their atmosphere. The analysis of time in these worlds will also improve our understanding of the diversity of atmospheres in the solar system as well as their similarities. After all, it could also make a long way to informing our understanding of exoplanetary planets and their atmosphere, perhaps even helping us to determine whether they can support life.

Loading

Loading

Loading … Loading … Loading … Loading … Loading Loading …


Source link