قالب وردپرس درنا توس
Home https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ Science https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ In vivo imaging of mitochondrial membrane potential in non-small cell lung cancer

In vivo imaging of mitochondrial membrane potential in non-small cell lung cancer



  • 1.

    Mitchell, P. & Moyle, J. Evidence distinguishing between chemical and chemosmotic mechanisms of electron transfer phosphorylation. Nature 208 1205-1206 (1965).

  • 2.

    Morais, R. et al. Ability to form tumor in animated nude mice of human cell lines lacking mitochondrial DNA. Cancer Res . 54 3889–3896 (1

    994).

  • 3.

    Cavalli, L. R., Varella-Garcia, M. & Liang, B. C. Reduced tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth Difference . 8 1189–1198 (1997).

  • 4.

    Madar, I. et al. Absorption characteristics of the novel PET compound 18F-fluorobenzyl triphenyl phosphonium in canine myocardium. J. Nucl. Med . 47 1359–1366 (2006).

  • 5.

    Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. United States 107 8788–8793 (2010).

  • 6.

    Ji, H. et al. LKB1 modulates the differentiation and metastasis of lung cancer. Nature 448 807–810 (2007).

  • 7.

    Shackelford, D. B. et al. Inactivation of LKB1 dictates the therapeutic response to the non-small cell lung cancer drug phenformin metabolism. Cancer cell 23 143–158 (2013).

  • 8.

    Madar, I. et al. Characterization of the membrane potential uptake of the new PET tracer 18F-fluorobenzyl triphenylphosphonium cation. Eur. J. Nucl. Med. Mol. Imaging 34 2057–2065 (2007).

  • 9.

    Smith, R. A., Hartley, R. S., and Murphy, Targeting MP Mitochondria Therapeutic Agents and Probes. Antioxid. Redox signal . 15 3021–3038 (2011).

  • 10.

    Kim, D. Y. et al. Evaluation of a mitochondrial voltage sensor, (18F-fluoropentyl) triphenylphosphonium cation in a rat model of myocardial infarction. J. Nucl. Med . 53 1779–1785 (2012).

  • 11.

    Madar, I. et al. Detection and quantification of the evolution of apoptosis evolution using the PET voltage sensor 18 F-fluorobenzyl triphenyl phosphonium. J. Nucl. Med . 50 774–780 (2009).

  • 12.

    Logan, A. et al. Evaluation of the potential of the mitochondrial membrane in cells and in vivo using targeted chemistry of click and mass spectrometry. Cell Metab . 23 379–385 (2016).

  • 13.

    Waldmann, C. M. et al. Automated multidose synthesis of potentiometric PET probe 4 – [ 18 F] fluorobenzyl-triphenylphosphonium ([ 18 F] FBnTP). Mol. Imaging Biol . 20 205–212 (2017).

  • 14.

    Dykens, J. A. et al. Biguanide-induced mitochondrial dysfunction leads to increased lactate production and cytotoxicity of aerobically positioned HepG2 cells and human hepatocytes in vitro . Toxicol. Appl. Pharmacol . 233 203–210 (2008).

  • 15.

    Li, F. et al. Inactivation of LKB1 induces a redox imbalance to modulate non-small cell lung cancer and therapeutic response. Cancer Cell 27 698–711 (2015).

  • 16.

    Giordano, S., Lee, J., Darley-Usmar, VM & Zhang, J. Distinctive effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxidopamine on cellular bioenergy and cell death. PLoS One 7 e44610 (2012).

  • 17.

    Singer, T. P. & Ramsay, R. R. Reaction sites of rotenone and ubiquinone with mitochondrial NADH dehydrogenase. Biochim. Biophys. Acta 1187 198–202 (1994).

  • 18.

    Caboni, P. et al. Rotenone, degelin, their metabolites, and the rat model of Parkinson's disease. Chem. Really. Toxicol . 17 1540–1548 (2004).

  • 19.

    Bridges, HR, Jones, AJ, Pollak, MN & Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria, Biochem. J . 462 475–487 (2014).

  • 20.

    Owen, MR, Doran, E. and Halestrap, AP Evidence that metformin exerts its anti-diabetic effects by inhibiting mitochondrial respiratory chain complex 1. Biochem. J . 348 607–614 (2000).

  • 21.

    Wheaton, W. W. et al. Metformin inhibits the mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3 e02242 (2014).

  • 22.

    Sanchez-Rangel, E. & Inzucchi, S. E. Metformin: clinical use in type 2 diabetes. Diabetologia 60 1586–1593 (2017).

  • 23.

    Birsoy, K. et al. Metabolic determinants of cancer cell sensitivity to glucose restriction and biguanides. Nature 508 108–112 (2014).

  • 24.

    Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164 681–694 (2016).

  • 25.

    de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes determines the evolution of lung cancer. Science 346 251–256 (2014).

  • 26.

    Momcilovic, M. et al. The GSK3 signaling axis regulates the adaptive metabolism of glutamine in squamous cell carcinoma of the lung. Cancer Cell 33 905-921.e905 (2018).

  • 27.

    Momchilovich, M. et al. Increasing energy stress selectively targets LKB1-deficient small cell lung cancer. Cancer Res . 75 4910–4922 (2015).

  • 28.

    Su, CY, Chang, Y.C., Yang, C.J., Huang, M.S. & Hsiao, M. The reverse prognostic effect of NDUFS1 and NDUFS8 in lung cancer reflects the oncoanuscular role of mitochondrial complex I. Sci. Rep . 6 31357 (2016).

  • 29.

    Molina, J. R. et al. The oxidative phosphorylation inhibitor exploits the vulnerability of cancer. Nat. Med . 24 1036-1046 (2018).

  • 30.

    Wittig, I., Braun, H. P. & Schägger, H. Blue native PAGE. Nat. Protocols 1 418–428 (2006).


  • Source link